Interpolation with bounded real rational units with applications to simultaneous stabilization

نویسنده

  • M. Bredemann
چکیده

In this paper we present sufficient conditions for the existence of a bounded real rational unit in H∞ to exactly interpolate to points in the right half plane (RHP). It is shown that these sufficient conditions are equivalent to the necessary and sufficient conditions for the existence of a bounded real irrational unit in H∞ to interpolate to points in the RHP, as initially described by Tannenbaum. The technique is then applied to the simultaneous stabilization problem of more than 3 plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algebraic design for the simultaneous stabilization of two systems

In this report we present a uniied description for studying the problem of the simultaneous stabilization of two plants. Three approaches for the simultaneous sta-bilizability are deened. The rst one corresponds to the deenition commonly used in the literature. For the third one, we show that, like for the rst one, the design of a simultaneous compensator leads to a divisibility condition in th...

متن کامل

Some properties of analytic functions related with bounded positive real part

In this paper, we define new subclass of analytic functions related with bounded positive real part, and coefficients estimates, duality and neighborhood are considered.

متن کامل

LMI Conditions of Strictly Bounded Realness On A State-space Realization To Bi-tangential Rational Interpolation

In this paper, we present the LMI conditions to characterize the strictly bounded realness of the state-space realization of the solution to the bi-tangential rational interpolation problem, i.e., they give the solution to the bitangential Nevanlinna-Pick interpolation problem [13], [3]. The bi-tangential Nevanlinna-Pick interpolation problem is the generalization of the classical interpolation...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

An Extension to Imprecise Data Envelopment Analysis

The standard data envelopment analysis (DEA) method assumes that the values for inputs and outputs are exact. While DEA assumes exact data, the existing imprecise DEA (IDEA) assumes that the values for some inputs and outputs are only known to lie within bounded intervals, and other data are known only up to an order. In many real applications of DEA, there are cases in which some of the input ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016